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Within the ice-type models, the solution of the five-vertex model is obtained with the use of the
Bethe ansatz. Since the allowed number of vertex types is odd, the arrow-reversal symmetry of the
system is broken by construction. Due to this, the exact solution obtained and the phase diagram
are very different from those of the symmetric six-vertex model. A connection to the asymmetric
six-vertex model (of which the five-vertex model is an extreme case) is made. The different regions
of the phase diagram are described and the transitions between them are analyzed. Several aspects
of the phase diagram are unusual, i.e., the ordered phases (both ferroelectric and antiferroelectric)
are frozen-in phases and the disordered phase is replaced by a ferrielectric phase. In the free-fermion
case, the known results of the modified potassium dihydrogen phosphate model are recovered.

PACS number(s): 05.50.+q, 64.60.Cn, 64.60.Fr, 68.35.Rh

I. INTRODUCTION

The two-dimensional lattice models of interacting sys-
tems which were exactly solved can be regarded as spe-
cial cases of a more general (and in general unsolved)
“interaction-around-a-face” model. From another point
of view, they can be regarded as extensions of the Ising
model. Thus all of them can be solved also by the
transfer-matrix method (for the Ising [1] and dimer [2,
3] models the transfer matrix reduces to Pfaffian equa-
tions) [4]. Subsequently it was realized [5, 6] that the tri-
angular three-spin [7] and hard-hexagon models [8] are
special cases of the eight-vertex model [9] and the self-
dual Potts model [10] is equivalent [11] to the six-vertex
model [12]. (Note that the six-vertex model without an
external electric field can be related to a critical limit of
the eight-vertex model [13, 14].) Consequently, we are
then left [15] with two distinct exactly solvable vertex
models in two dimensions [16, 17], that is, the six- and
the eight-vertex model. Here we will be mainly interested
in the six-vertex model.

The vertex models define a statistical mechanics on a
lattice (for simplicity, a square lattice) as follows. On
each link there is a variable taking two values that is
represented (in the conventional representation) by an
arrow, i.e. — or «, or equivalently (in the so-called line
representation) by an empty or full line, respectively. To
each vector therefore there correspond 24 = 16 possible
configurations. To each of these we associate a Boltz-
mann weight w; = exp(—0¢;). This general model is re-
ferred to as the sixteen-vertex model. It is equivalent to
an Ising model with two-, three- and four-body interac-
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tions and with an external magnetic field [18]. The exact
solution of this general ferroelectric model is not known.
Only in two cases we know of, the system will exhibit
an Ising-like transition. These two cases are obtained
[19] by a specific choice of the Boltzmann weights which
leads inevitably to an Ising model with only two-body
interactions.

If we choose the Boltzmann weights so that six ver-
tices with two entering and two exiting arrows have finite
weight, then we define the six-vertex model, historically
known as an ice-type model [20]. In the following, we
will adopt the traditional [21, 22] ordering of the vertices
[23]. After its exact solution was known [12, 21, 22], the
six-vertex model had been extensively used in numerous
statistical-mechanical problems. One of the most use-
ful is surface modeling [24], i.e., the description of the
equilibrium shape of a crystal and of surface growth.

An important class of models, frequently used for a
crystal-vapor interface, obeys the solid-on-solid (SOS)
condition [25]. The atoms are assumed to be densely
packed in a lattice; at the interface the condition stipu-
lates that every atom must sit on top of another, so that
overhangs and vacancies are excluded. Since neither the
bulk of the crystal so defined nor the vapor contribute
any degrees of freedom to the system, the model merely
describes the crystal-gas interface in a simplified form.
It turns out that some versions of the SOS model, which
correspond to certain surfaces (faces) of well-defined crys-
tals, are isomorphic to the six-vertex model. For example
the body-centered solid-on-solid (BCSOS) model [24, 26]
is suitable for the description of the (001) face of a bcc
crystal. The model can be also extended to model the
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(001) face or the (011) face [27, 28] of a fcc crystal.

A new method, which differs from the previous map-
ping scheme, was introduced recently [29] to describe the
surfaces of crystals with rectangular (in particular, cubic)
symmetry. The only allowed perturbations of a perfectly
flat surface are noncrossing steps. Let us consider the
line representation [21, 22] of the allowed arrow configu-
rations of the six-vertex model. Performing the mapping
procedure of Ref. [29], the step lines on the crystal sur-
face can be identified with the fermion lines occurring in
the six-vertex model. If multiple steps emerge, a sliding
procedure can be applied [29] to guarantee the presence
of only single steps on the crystal surface. However, af-
ter application of the sliding procedure no touching of
lines will occur. This is an important observation since,
as a consequence, vertex two is actually absent from the
six-vertex representation of the surface model.

A five-verter model emerges in the representation of
crystal-growth models. As just noted, some variants of
the terrace-ledge-kink [30] model are isomorphic [29] to
a five-vertex model. This becomes evident if we keep
in mind that inclusion of vertex two would allow mul-
tiple steps to develop and cavities to appear which are
not allowed in the terrace-ledge-kink growth model. In
a different model of crystal growth [31], the five-vertex
model can be viewed as a probabilistic cellular automa-
ton. Physically it describes the surface slope of a crystal
growing through deposition [31]

Based on these physical motivations we were led to look
for an exact solution of a five-vertex model. This is the
motivation of the present paper, which is organized as fol-
J

(wrwe + wawg — wsws)2;
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lows. In Sec. II we briefly present the Bethe-ansatz exact
solution of the five-vertex model. The analytic proper-
ties of the solution and its connection to the asymmetric
six-vertex model are also discussed. In Sec. III the
free-fermion solution is revisited. Section IV is entirely
devoted to the study of the phase diagram. The effect of
an external field, the study of the correlations, and the
connection of the model to SOS surfaces will be presented
in a future publication.

II. BETHE-ANSATZ SOLUTION

In the general six-vertex model, all the six local ar-
rangements will have distinct energies: €1,...,6¢, keeping
the traditional ordering of the six vertices [21, 22]. The
technique to obtain an exact solution with the coordi-
nate Bethe ansatz is well known [21, 15, 32]; we will just
briefly present the results. Let each row in the N x N
square lattite consist of N —n up arrows and n down ar-
rows. The eigenvalue [33] of the general six-vertex model
in terms of fugacities (z; = expik;) is

ﬁ _WsWeZi
w
-1 s+ W1 — W4z
N T _ wswe
e T - . 1)
e w1 — W4z2;

The sets {k1,k2,...,
the equation

kn} of n wave numbers k;, obey

n
_1)n_1 H WiW3 + WaWwye2;Zj —
=1 W1ws + Wow4ziZj —

There are only four independent energies to consider: this
is because the zero of energy can be chosen arbitrarily,
and the ice rule implies that €5 = €¢ is no restriction [34).

For the five-vertex case it is actually enough to consider
three independent Boltzmann weights, i.e., letting wy =
0, there exist three independent ratios among wi, ws, wy,
and ws. In these conditions we will solve the general five-
vertex model [35]. Our solution will be more general than
the one derived previously by Wu [36], i.e., not limited
to the free-fermion case wsws = wswes. In the present
(field-free) case, however, we still keep €4 = 3. Hence
the independent parameters reduce to two: z = w;/ws
and y = w3 /ws.

The noninteracting case had been solved [36] by a com-
pletely different technique, i.e., the Pfaffian method, us-
ing the equivalence of the present problem to that of
close-packed dimers on a hexagonal lattice (it was known
already from Kasteleyn’s work on dimer statistics [2] that
a phase transition exists). For this case Garrod also com-
puted the correlations between arrows [29].

In the symmetric six-vertex model [12, 21, 22], the fur-
ther conditions €; = €5 and €3 = &4 are imposed. In
this way the model is unchanged by reversing all dipole
arrows, which one would expect to be the situation for a

(w1w2 + w3zwyg — w5w6)zj )

2)

r

model in zero external field. To get insight in the five-
vertex case from the six-vertex model one has to consider
the latter in a direct field [37] (i.e., the so-called asym-
metric six-vertex model) and to perform certain limits,
where the field and the vertex energies have to approach
infinity simultaneously (see Appendix A). The textbook
solution [37] of the asymmetric six-vertex model uses (32,
37] several changes of variables, which are such as to en-
sure that the model will be symmetric with respect to re-
versing all arrows and the external field. This makes the
five-vertex limit (see Appendix A) difficult to handle; in
addition those changes of variables are not the most prac-
tical ones for handling the five-vertex limit. Therefore,
hereafter, we resort to a direct solution of the five-vertex
model by applying the Bethe ansatz afresh.
If we = 0 the consistency equation [Eq. (1)] becomes

<1w1H1_ij. 3)

The interaction constant of the five-vertex model Aj is
defined as
wi — wi

Ag = 225 (4)

wiwsg
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Let us first analyze Eq. (3), which can be written in the
form

=862 _ iyt T - Ass) (5)
i j=1

Writing Eq. (5) for all 21, ..., 2z, and multiplying the left-
hand sides and the right-hand sides of the n equations
thus obtained we get

2122 2p—-12n = T, (6)
with 7 being a Nth root of unity. Using
zj = ePi = eligthi | )

that is, p; = k; — irj, for any N and n the r;’s and the
k;’s satisfy

iT‘j = 0,
j=1
®)

N > kj =2mm, m=0,1,...,N—1.

The property stipulated by Eq. (8) was expected to
hold, as it holds in any integrable model [38]. The points
described by the function 1 — Asz; [see Eq. (3)] lie on a
circle of radius Ase™ with the center at the point Imz =
0, Rez = 1. Thus the following transformation [38] can
be performed

, 1— Ase®®
iO (p,a) = _—§_
€ 1 — Ageid ’ (9)

The analytic properties of ©(p,q) are analyzed in Ap-
pendix B. As it can be seen the kernel is degenerate.
Thus, on one hand, we have a simpler case than that of
the symmetric six-vertex model, due to the degenerate
kernel. But, on the other hand, the evaluation of the
free energy will be more envolved than its symmetric six-
vertex counterpart, due to the fact that the kernel is not
unimodular.

It is very instructive to consider the case n = 2. From
Eq. (3) we obtain

As(zV 14 2) =2V +1. (10)

The above equation is identical to that of the symmetric

six-vertex case [22], with the obvious replacement of Ag

with As. The solution of Eq. (10) is well established

[22]: if A5 < 1, Eq. (10) has one real solution and no

pure imaginary solution; if As > 1, Eq. (14) has no real

solution, but has a single positive imaginary solution.
Using Eq. (9), from Eq. (3) we obtain

exp(iNp) = (—=1)"7* [] expli®(p1, ;)] - (11)
j=1

Taking the logarithms

Np = 2nI;+ Y O(pi,p;) » (12)
j=1
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where I; must be an integer if n is odd and half integer
if n is even. The form of ©(p,q) being rather simple,
the method of Yang and Yang [38] can be easily applied
to prove that Eq. (16) has a unique solution with I; =
l—(n+1)/2, wherel =1, ..., n.

As the coordinate Bethe ansatz was constructed, see
Eq. (1), the vertical down arrows were counted explicitly
by n. Thus the ratio n/N is the proportion of down
arrows in each row of the lattice. In other words, it is
the probability to find a vertical arrow to be down. Due
to the periodic boundary conditions applied standardly
n is strictly equal for all rows [21]. In the limit N — oo
the momenta p;1, ..., p, become densely packed along
a smooth curve C in the complex z plane. The curve C
must be symmetrical with respect to the transformation
z — z* and will be determined later on. Let us denote the
two ends of the curve C by Q; and Q5. If we denote the
number of p;’s lying between p and p + dp by Np(p)dp,
with p(p) being the distribution function, then as the
total number of p;’s is n, p(p) must satisfy

Q2 n
/Q pp)dp = o (13)

For a given value p of p;, I; + (n +1)/2 is the number of
ki’s with ! < j. Thus Eq. (16) becomes the well-known
linear integral equation [38] for p(p)

Q2 59(p,p')

2mp(p) + / 5, —P@)dp = 1. (14)
@ /4
The value of
P
2rg(p) = 27N /Q o) dp’ (15)

is known at the end points due to Eq. (13). The curve
of integration is defined [38] by those points z at which
Img = 0. This equation is satisfied by any straight line
symmetric to the imaginary axis of the complex z plane.
Thus we obtain

Q2=Q =qd +ig",

It

(16)
Q=-Q" = —¢ +ig",
with ¢’ € [—m,+7] and ¢” € [0,+00). The solution of
Eq. (14) can be easily found:
Ase"”
1-— A5ei1’

1 1—py
= — |1
pl) = 5|1+ —5

(17)

We recall that n represents the number of vertical down
arrows on a row. Thus the vertical polarization is p, =
1-2n/N. As it can be seen from Eq. (17) the distribution
function has the same algebraic form for any As. This
property is a direct consequence of the form of the kernel
(see Appendix B) and not of its analytic properties.

The vertical polarization p, can be also easily deter-
mined with the use of Egs. (13) and (18):

po = 1—2¢'/{r +Im[In(1 — Ase™9"e)]}. (18)
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Note that the value of the vertical polarization can be ob-
tained directly also from Eq. (12) as we take the thermo-
dynamic limit. The real part of this equation is exactly
Eq. (18), while the imaginary part will give

+Q ,
/ In(1 - Ase™®)p(p)dp
—-Q*

1 — Du "ot
= ¢+ —2 Relln(1 - Ase™"" )], (19)

This equation will be useful in the evaluation of the free
energy. Relnz = In|z|, and for the imaginary part we
used the obvious convention Im In z = argz.

For further considerations, we use the notations z =
wi/ws and y = wa/ws. As in the symmetric six-vertex
case [22], the phase diagram can be conveniently drawn
in the (z,y) plane. The free energies corresponding to
the we = 0 (five-vertex) case, determined from Eq. (1)
are

+Q 1 — Ase®
fL = minpu {51 — kBT/Q* ln(x/y—_s:w>p(p)dp} N
(20)

fu

I

miny, {54 +kgT(1 —py)Iny

+ kT /Hf In(z/y — eip)p(k)dk} ,

the thermodynamic free energy being the smaller of the
two (which will turn out to be fr in all cases). Since the
integrands are symmetric functions of Rep and antisym-
metric for the transformation p — —p*, these integrands
are real. In the thermodynamic limit both eigenvalues of
Eq. (1) are growing exponentially, the larger dominating
the smaller. However, with the use of Eq. (19) it can be
shown, see also Appendix A and Ref. [37], that fr < far.

III. THE FREE-FERMION SOLUTION

We will consider first the noninteracting limit, i.e., the
As = 0 case, which was solved [36] already, but not thor-
oughly analyzed. The noninteracting case corresponds to
y = 1. In this case, Egs. (17), (18), and (20) simplify con-
siderably, fr = fu with p(k) = 1/27, ¢’ = w(1 — p,)/2,
and ¢” = 0. The integral entering in the expression of
the free energy is sensitively dependent on the value of x.
For large values of x it is always negative, independently
of Q. The free energy for x — oo (T' — 0 limit) is

1_
fi = e1+kBT Do

Inz. (21)

To obtain the minimum value (i.e., €1), p, = 1 must
be considered. Thus the system at 7' = 0 is in a com-
pletely polarized state. To depart from this ferroelectric
state, the obvious condition 1 + 22 — 2z cosk > 1 is re-
quired. The equality defines the transition for p, = 1.
A remarkable feature of this phase transition, as it was
noted already by Kasteleyn [2], is that up to the transi-
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tion point the system shows a perfect ordering, i.e., the
transition is a second-order phase transition of a rather
unusual kind. In the usual case, e.g., at the Curie point
of a ferromagnet, the order parameter vanishes on both
sides of the transition; here, on the contrary, it is maxi-
mal. The second-order phase transition occurs at x = 2,
a relation which defines the critical transition tempera-
ture kT, = (e4—¢€1)/In2. This result was also obtained
by Wu [36]. It should be noted that a frozen-in ferroelec-
tric state is obtained in this A5 = 0 case which is distinct
from that for As > 1 indicated above.
The free energy is €; for z > 2 and is equal to

kT

q/
fo =e+ - In(1+z? — 2z cosk)dk  (22)

0

for 1 < z < 2. Here, ¢ = cos™(z/2) which, due to
g’ = (1 —py)/2, defines also the polarization per vertex.
The form of the free energy given in Eq. (22) is identical
to that obtained by Wu [36]. It is found that the vertical
polarization does not vanish in zero field. p, is a smooth
function of z, being equal to unity for z = 2 (T = T,),
and reaches the p, = 1/3 value at * = 1 (T — o0).
This is in contradiction with the symmetric six-vertex
results, where at infinite temperature all vertices are
equally probable (p, = 0). In the present case, how-
ever, we have n; = 1/3 and ng = ng = ns = ng = 1/6.
The internal energy is a continuous function of z, thus
also of T'. The specific heat ¢ =0 for z > 2, i.e., T < T..
Near the transition

\/§ln2 2
that is
V2T, In?2
T = Tun] = s (24)

The critical exponent o is thus a = 1/2.

The  — 1 limit has a major significance because it
corresponds to " — oo. The specific heat smoothly de-
creases as x decreases, vanishing for z = 1 as

5+ 73
372 ’
The same behavior is obtained in the z < 1 variation

range. In this case the free energy is given by

kT
fir = eat 5o

clr = 14)] = (@ -1)? (25)

q/
In(1 + z? — 2z cos k)dk , (26)
0

This means that the specific heat approaches zero at in-
finite temperature in both limits as

(64 —€1)?
e
where ¢ = (5 + mv/3)/37v/2. The entropy in the same
limit is equal to the known value [29]

Cly(n/3)

(T — o0) = (27)

S(T — 00) =80 = ~0.323, (28)

where Cly(2) = — [; In[2sin(z/2)]dz is Clausen’s in-



47 PHASE DIAGRAM OF THE FIVE-VERTEX MODEL

tegral [39]. This value is considerably smaller than
the entropy density of the six-vertex model, where [21]
Se = 3[In2 — (1/2)In3] ~ 0.431. In the same limit, the
free energy behaves as

f(T — o©0) = const — TSy . (29)

At this point, we must mention that the free energy
can be written in a compact form (even in the Ag # 0
case) using Clausen’s integral, or as a series of diloga-
rithm functions [40].

IV. THE PHASE DIAGRAM

Hereafter we study the analytic properties and the
phase diagram of the free energy fi given in Eq. (20).

Let us first study the ferroelectric transition, which
occurring at p, = 1 is characterized by a complete po-
larization. The curve at which this transition occurs can
be easily obtained [32, 37] if we recall that p, — 1 cor-
responds to n — 0. Directly from Eq. (1) by setting

ki,...,kn = 0 the transition curves are obtained to be
_Jy—-1/y forz <y
x_{y—}-l for z >y, (30)

corresponding to curves a and b of Fig. 1, respectively.
The analytic properties of the free energy close to these

transition curves can be studied by transforming f;, from

Eq. (20) to '
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FIG. 1. The phase diagram of the five-vertex model in
zero external field, in terms of the Boltzmann weights x =
wi/ws and ¥ = w3/ws (w2 = 0, ws = w4, and ws = we).
All curves represent (second-order) continuous transitions. Fe
stands for a ferroelectric, Fi for a ferrielectric, and Af for an
antiferroelectric phase. The z = y = 1 point corresponds to
infinite temperature, while any point satisfying z/y = 0 or
y/x = 0 corresponds to T' = 0.

+e 1- Ase—q"eip' / "7 ’
fL = g1 — kT _q’ Reln m,—flep(p + 2q )dp
+q’ 72 xTr "o / 7 /
+kBT/ Im[ln(1 — Aze™ e”?)] —Im|In v e 7 e® Imp(p’ + i¢")dp’ , (31)
—q

where the p = p’ + ip” notation was used. Other com-
binations of functions will give an integrand in Eq. (31)
which is an even function of p’. Thus their integral over
a symmetric domain vanishes.

The vertical polarization obtained in Eq. (18) equals
unity for any ¢” and As if ¢/ — 0. Clearly, the integrals
from Eq. (31) are vanishing in this limit for z > y. In
the opposite case, i.e., y > x, care should be given to
eliminate the occurring divergences. Let us analyze the
two cases separately.

In the z > y situation we can borrow the computing
procedure from the noninteracting case. In particular we
study the ferroelectric transition (line b in Fig. 1). The
latter is obtained taking the ¢’ — 0 limit. In order to
obtain the minimum value of fr, in the ¢’ — 0 limit we
must require the first integral to be maximal and the
second one minimal. Thus the first integrand of Eq. (31)
must be positive. This implies that the condition

f

1—2Ase7" cosp’ + AZe=20" > 1 (32)
(z/y)? — 2(z/y)e~9" cosp’ +e=2¢" =

will determine the variation range of p’. In Eq. (32) the
equality defines the maximum value of p’, i.e. the inte-
gration limit, for which we obtain

¢ = arccos((x/y)2 (1= Ad)em™” — 1) (33)

2(x/y — As)e=9"

for any ¢”. The value of the latter is determined by
minimizing the second integral from Eq. (31), obtaining
g¢"” — 0. Thus the analytic form of the vertical polariza-
tion is governed by Egs. (18) and (33). The minimum of
fr forany £ >y and ¢’ — 0 is
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kT +d 1
51'——%— A 1n|::—1:—2<y2+
with ¢’ given in Eq. (33). Equating ¢’ to zero gives the transition line x = y + 1 from Egs. (30). To the right of this
line the free energy is ;. That is, in the region Fe I of Fig. 1, the system is an ideal ferroelectric. The lowest energy
state is one where all vertices are of type 1. This ferroelectric phase remains stable on the whole region Fe I of Fig. 1,
even for low values of y, where As < —1.

In order to see what type of transition occurs, we calculate the thermodynamic quantities. We obtain that the

internal energy is a continuous function on the whole transition line, while the specific heat near the transition behaves
as

fr =

1 -2y + 2zy cosp’>:|d , (34)

22 + y? — 2zy cosp’

(e5 —e1)(e5 —€4)

(e5 —€1)® ,0q' | OFL(z,y,p') dq' | 0FL(z,y,p')
Wy = T | T e + T2 Yo | oy
p'=q’ p'=q’
(e5 —e1)(e5 — €4) "|0FL(z,y,D) (65 —e4)® ,0¢' | OFL(z,y,p)
+ T3 :v'y 6y £ , Tz Y By By » + const. (35)
p'=q’ p'=q

Fr(z,y,p') is the integrand from Eq. (34). Using the analytic form of ¢’ from Eq. (33), we see that the d¢'/dz( y)
term introduces a square-root divergence approaching the £ = y + 1 transition line. Thus the specific heat behaves
like c[z — (y + 1)(-y] ~ [1 — z/(y + 1)]7Y/2, in terms of temperature c[T' — Ty4)] ~ [T — T, ]‘1/2 This means that
curve b of Fig. 1 represents a second-order phase transition, with critical exponent & = 1/2 (as in the noninteracting
case).

In the x < y situation, as mentioned previously, care should be given to the divergent integrand. We write the free

energy with the use of Eq. (19) as

T

n
fo = e1— kT [q"—i— Z (—e ¢ ) sin(nq’)] —kBT p” Re[ln(l — Ase™9"¢')] — lng

Ase‘q”eiq' -1
A5% -1

11 Ase=a"eid —1])" . Ase=?ei —1

For p, — 1 the minimum value of the free energy from
Eq. (36) is obtained for e=¢" = z/y, the value for which
the first summation is maximal. Considering also p, — 1
and ¢’ — 0, Eq. (36) reduces to

1—
fo = €4 — kT

PoInAs . (37)

As it can be seen, the second ferroelectric transition oc-
curs at As = 1, i.e., at the £ = y — 1/y curve, see Egs.
(30). The system is in a frozen-in state in the region
Fell of Fig. 1: the lowest energy state is one in which all
vertices are 4 or 3.

Equation (37) can be taken as the first two terms in an
1 — p, expansion of the free energy near the transition.
The following contribution is obtained directly from Eq.
(36). Thus the free energy close to the transition curve
becomes

fL = &4 — kBTl "2pv lnAs

3
—kpT y(y —1)( p”) . (38)

Note that the second term of this expansion is positive

[

due to the fact that As < 1, while the third term is
negative, as we have y > 1. From Eq. (38) the vertical
polarization, near the transition, can be expressed as

In(1/As)
2 -1)
It can be seen, from Eq. (39), that indeed As = 1 implies

py = 1. The free energy from Eq. (38) with the use of
Eq. (39) becomes

1_p'u _

5~ \/3:2 (39)

In®2(1/As)
fo = ea+kpT(3)% 2 —L22 (40)
¥ m/Pr - 1)
Thus the free energy varies like fr[T — Tyy] ~ [T —

c]3/ 2, which implies for the internal energy u[T —

Te(4+)) ~ [T — T.]*/2. Thus the internal energy is a con-
tinuous function at the transition. The specific heat is
zero to the left of the transition curve. But from the
right it diverges like ¢[T' — Te(4)] ~ [T — T.]"'/2. The
a transition curve represents another second-order phase
transition, again with critical exponent o = 1/2.

Between the a and b transition curves the vertical and
horizontal polarizations are smooth functions of z and y.
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Since this domain, region Fi of Fig. 1, which is delimited
by the a, b, and ¢ transition curves, has a nonvanishing
polarization per vertex, it will correspond to a ferrielec-
tric phase. Approaching both curves a and b the vertical
polarization tends to unity, being equal to unity on the
whole transition curves.

In the As < —1 region an antiferroelectric phase is
expected. As in the previous case, we must take care
of the divergences which occur in the expression of the
free energy fr, Eq. (20) in this limit. In doing this we
perform an integral variable change as in Ref. [37], or in
Nolden’s thesis [42]. The form of the kernel from Eq.
(9) suggests a transformation p — p(a) which reduce it
to ©(a, 8) = a — B. Under the transformation (p,q) to
(a, B) the integration path C is mapped in a curve C’
and the end points @ and —Q* to +a + ib and —a + ib.
J
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Since the integration path is a straight line, we introduce
the new variables o = uw + 4b and 8 = v + ib to obtain
integrals running on the real axis. In these new variables
O(a— B) = ©(u—v) = u—wv. The distribution function
from Eq. (17) becomes

1— Do e—beiu
= — , 41
R(u,b) 2 + peryram (41)
while the vertical polarization is
_ —b iu __
1-py _ Im(ln(e~"e 1)] . (42)
2 T+a

The free enregy fr, from Eq. (20) in the transformed vari-
ables becomes

+a —_ —b_iu
fL = sl—kB;T R(u,b)[iu—b—ln(%—g>}du. (43)

2r J_, As

To simplify the expression of the free energy we transform Eq. (12) into the new variables and perform the thermo-

dynamic limit. The real part of the equation so obtained is exactly Eq. (42) while the imaginary part is

1— e beia
As

ab 1 e

2 —b_ia __ = - b —
Re {ln + WRe[ln(e e 1)] + —+ = — sin(na) = 0. (44)

n=1

As it can be seen from Eq. (42) an antiferroelectric phase is reached for a = 7, which corresponds to ¢’ = 7 in Eq.
(18). To obtain the transition curve we evaluate the free energy in the limit p, — 0. Performing the integral in Eq.

(43) [40] and using Eq. (44) we obtain

= 1
fo = 51+k3T{lnx+b+lny—QZﬁ
n=1

where arctan(z,y) is the two-argument arctan function
[40], i.e., arctan(z,y) = arctan(y/x)£m. The free energy
for p, = 0 is obtained from Eq. (45) to be

fL = €5 + kBT(b + In y) y (46)

where b must be determined from Eq. (44) in the same
limit, obtaining

(1+e7?)?

The minimum of the free energy is obtained for b =
—Iny. This means that the antiferroelectric phase is
built up only with vertices five and six. Thus the or-
dered antiferroelectric phase is in frozen-in state. This is
a very interesting result, as no other vertex model exhibit
a frozen-in antiferroelectric phase. In order to under-
stand this result, we recall the definitions of the vertical
and horizontal polarizations, which are p, = n; —nz+n4
and pp = n1 + ng — ng, respectively. It can be seen that
an antiferroelectric phase can be realized only if n; = 0
and n3 = ng. However, these conditions represent the
Ag — —oo (T' — 0) limit of the symmetric six-vertex
model [22], which is frozen in 5 and eg.

Combining Egs. (46) and (47) the transition curve be-

In

y’(1+e™®)
1—y?

n
> sin[n arctan(e ®sina,e ®cosa — Dljacr } , (45)
[
comes
1-y
Tr = 3 48
1+y (48)

which is curve ¢ from Fig. 1. Below this curve the lowest-
energy state is one in which all vertices are 5 and 6. The
free energy close to the transition can be obtained from
Eq. (45)

l—y (pym)®
m — kT 3 F(y),

fL =es— kBT’—;E In

(49)

where F(y) is a function dependent only on y; see
Ref. [43]. Note that the second term of Eq. (49) is pos-
itive as = approaches the transition curve from above.
The vertical polarization from Eq. (49) can be obtained
to be

_ (W@ —y)/z(1 +y)]
Pv = \/ 3 F(y) . (50)

It can be seen that Eq. (50), indeed implies p,, = 0 at the
transition curve. The free energy from Eq. (49) with the
use of Eq. (50) becomes
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5 In®?[(1—y)/z(1 +y)]

7N 1O

Thus the free energy varies like fL[T' — T¢4y] ~ [T —

T.]3/?, which implies for the internal energy u[T —
To(+)) ~ [T — T.]'/2. Thus the internal energy is a con-
tinuous function at the transition. The specific heat is
zero below the transition curve. But, from above it di-
verges like [T — Tep(4)] ~ [T — Te]"*/2. The c tran-
sition curve represents once more a second-order phase
transition, with critical exponent o = 1/2. Thus all the
ordered phases which appear in the five-vertex model are
in a frozen-in state, and all transitions are second-order,
with o = 1/2.

Closing, we mention that the frozen-in antiferroelectric
phase boundary obtained in Eq. (28) can be obtained
from an SOS model point of view, as it follows. The
elementary excitation of the antiferroelectric groundstate
is a step with the properties of a SOS phase boundary.
The step may go upward or downward and to the right.
Each step to the right will have a normalized Boltzmann
weight z and each step moving on the vertical axis will

have y. The partition function of an elementary step will
be

(S yy_l)]” (=) @

with NV being the horizontal width. These steps will occur
as z(1+y)/(1 —y) > 1. Thus the phase boundary of the
antiferroelectric phase will be given by Eq. (28).

fL = es + kT

(51)

V. CONCLUSIONS

We have shown that the Bethe ansatz provides exact
eigenvalues for the five-vertex model. As the analysis
of the eigenvalues and eigenfunction demonstrates, the
model turns out to be easily integrable due to the pres-
ence of a degenerate kernel. The five-vertex model can be
connected to a specific limit of the asymmetric six-vertex
model, where both the horizontal and vertical external
fields and the vertex energies have to approach infinity si-
multaneously. This approach makes the five-vertex limit
difficult to handle and infinitely large additive constants
to appear. Therefore we obtained a direct solution of the
five-vertex model by applying the Bethe ansatz afresh.
Doing this, we were also able to study simply the effect
of an external field on the five-vertex model (i.e., to de-
termine its phase diagram in a field) and to calculate the
correlations along a row, results which will be the subject
of a future publication.

The phase diagram obtained in the thermodynamic
limit contains only continuous transitions of second or-
der. Several aspects of the phase diagram are unusual.
Even the second-order transitions are of unusual type,
because the order parameter is equal to unity on both
sides of the transition, instead of vanishing as in the
Curie point of a ferromagnet. The model exhibits an
antiferroelectric phase built up only with vertices 5 and
6. Thus, even the ordered antiferroelectric phase is in a
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frozen-in state. This is interesting, since no other ver-
tex model is known to have a frozen-in antiferroelectric
phase. The model also exhibits two frozen-in ferroelectric
phases, which are suitable to describe, from the point of
view of Garrod, Levi, and Touzani’s theory [29], perfectly
smooth surfaces of simple cubic crystals.
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APPENDIX A: CONNECTION
BETWEEN THE ASYMMETRIC SIX-
AND FIVE-VERTEX MODELS

In the asymmetric six-vertex model the following four
new variables are defined [32, 37, 42]:

n = wiwo — 666 5 _ wsWe — 62[36
wawy ' VWiwawswy ’

and
H = |98 _ 26n . [W1W4 e2Bv (A2)
Wolyg ! Wows ’

where h and v are the horizontal and vertical field com-
ponents. The interaction constant is introduced as

Ag = -;'(774-%—5)-

Using these new variables, as mentioned in Sec. II, the
model is symmetric with respect to reversing all arrows
and the external electric field. The textbook solution of
the asymmetric six-vertex model runs as follows. The
free energy from Eq. (2), with the transformed variables
defined in Egs. (Al), and (A2) is

(A1)

(A3)

T, h,0) = £(1,6 ) = vpy — 2L Inorwpen) |
(A9

where p, = 1 — 2n/N is the vertical polarization and
f(n,&,h) = —kpT/N In A(n), with

A(n) = (nH)N/2H[n‘1 - #;]
i=1 t

n
H —N/2 _ n
+ (nH) l;[1 [n T (nHzi)-l] (A5)
of the well-known form [21, 32, 37]. Since the model is
symmetric with respect to reversing all arrows and the
external field, it is controlled by four independent vari-
ables. These are obtained by imposing [32, 37] ws = ws
[34] and wiwawsws = 1. In these conditions the six al-
lowed vertices are obtained as
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1 1
612—56—]1——’0 62—_§6+h+va

1 1
33=+§6—h+v, 54=+§6+h—’0 (A6)
€y = —€, € = —€

and the free energy of the asymmetric six-vertex model
can be given in terms of the rapidity ¢, defined as

?Wr;z forAg < —1,Ag = —coshA\,A >0

l?t,i_‘_—;l for |[Ag| < 1,Ag=—cosp, 0 < p<m

—n—"?- for Ag > 1,Ag = coshv,v > 0.

e~ =

(A7)

We note that the parametrization from Eqs. (A7) are for
the n <1 case. For the opposite case n > 1, analyzed in
Refs. [32, 37], the ¢ « —¢ change should be performed.
Combining Eqgs. (A7) with Egs. (A1) and (A2) the prod-
ucts of the Boltzmann weights can be expressed as [32]

s1nh2 tx—-9¢),M6 < -1
Wi

sin® -(,u $),|A6| <1 (A8)
sinh? Lv—9¢),06 >1,
s1nh2 LA +¢),06 < -1

wawy = { sin’® (li +¢),186/ <1 (A9)
smh2 fv+¢),06>1,

and

sinh? \, Ag < —1

wswe = { sin? p, |Ag| < 1 (A10)

sinh? v, Ag > 1.

Naively, one might think to obtain the five-vertex model
by simply letting ws = 0 in the above equations. But it
can be seen immediately that for any w; = a finite and
wg = 0, Eq. (A8) implies A = ¢ (respectively, u = ¢ or

= ¢) in the three cases. Hence Egs. (A9) and (A10)
yield wsws = wswe, which is nothing other than the free
fermion condition [41].

As it can be seen from Egs. (A1)-(A3), in order to
obtain other than the non-interacting case the following
limits n — 0, £ — 00, H - V — 00, and Ag — £oo
must be taken, in a way that the products n§, nH and
the ratios £/H, Ag/H are finite. The manipulation is
rather delicate, however, since these limits are obviously
related. We find, using the notation of Sec. II,

H

oo = 2= ElHmoo =
MH—00 = Hy’ H—oo = :z:y’

(A11)

H
DglHAo00 = ?As~

Thus the original six vertex energies (egs}) from Egs.

(AB) are related to the five vertex ones (sf’}, s§5} = 615},

{5}

and €577 = 6({55}) in the h — oo as

1
el = 5(5{5} — el —h
1
{6 5(5{5} - 5;5}) + 3h,

1
R (G R

ey’ =

(A12)
et = 2 — el - n
R
(9 = Lel® o e

To handle the free energy f(n,&, h) given in Eqs. (A4)
and (A5) in the limit of Egs. (All) is rather difficult.
However, it can be shown that up to an additive (in-
finitely large) constant the expressions of f1, and fas are
obtained. It is known [37] that fr < far always.

In the following we present one of the few, relatively
tractable limits of the asymmetric six-vertex results,
namely the derivation of the transition curves. In the
limit of Egs. (Al1l), the two transition curves which de-
fine the phase boundaries of ferroelectric phases, Egs.
(30) of Sec. IV can be obtained without major difficulty
from Egs. (355) of Ref. [21]. Concerning the antiferro-
electric phase, its transition curve is given by [42]

InH =

n
22( 1)" sinhg"n ,

‘cosh An (A13)

where ¢ is an integration limit similar to that defined in
Eq. (16) and A was defined in Eqgs. (A7). In the H — oo
limit we obtain

, 1-—
e? =H y,e =
x zy

which together with Eq. (12) gives Eq. (48) of Sec. IV.

; (A14)

APPENDIX B: ANALYTIC
PROPERTIES OF THE KERNEL

Let us study the analytic properties of the ©(p,q)
function defined in Eq. (9). Notice that Re®(—p*, —¢*)
= —ReO(p,q) = ReO(¢,p) and Re6©(0,0) = 0, while
ImO(—p*, —¢*) = ImO(p,q) and Im6(0,0) = 0. Con-
cerning its definition interval, ©(p,q) is a single-valued
analytic function of As, p, and q if the real parts of the
two latter variables lie in the open interval of the varia-
tion range of the k;’s, which is the following

—(r—v)<k; <m—v for|Ase"| > 1,
(B1)
—(r—p)<ki<m—p for —1<Aze" <1.

The parametrization which is defined by the form of
O (p, q), corresponding to Eq. (B1), is

Ase” = —secv, 0<v<m/2
(B2)

Ase” = —cosp, 0 < u< 7.
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These conditions are very important, because they define
uniquely the branch of the In function in Eq. (9).

Under the conditions of the |Aze”| > 1 case, see Egs.
(B1), we have

—|m — 2v] < Re©(p,q) < | — 2y, (B3)

and Re© (p, ¢) has a discontinuity at those p and ¢ values
at which its denominator vanishes. On the other hand,
if —1 < Age” < 1, then

—|m —2u| < Re®(p,q) < |7 — 2 , (B4)
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and there are no singularities. This behavior of the
ReO(p, q) function in the intervals |Ase”| > 1 and —1 <
Ase” < 1 is identical [38] to the behavior of the sym-
metric six-vertex kernel in the intervals Ag < —1 and
—1 < Ag < 1. The Ag notation is self-explanatory. On
the other hand, ImO(p, ¢) behaves as a real logarithmic
function in both cases.
By direct differentiation of Eq. (9) it can be seen that,
e.g.,
ae(pa Q) _ ASEip
Op T 1—Ager’

that is, the kernel of the five-vertex model is degenerate.

(B5)
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